Fluoride inhibition of proton-translocating ATPases of oral bacteria.
نویسندگان
چکیده
The ATPases of isolated membranes of lactic acid bacteria were found to be inhibited by fluoride in a complex manner. Among the enzymes tested, that of Streptococcus mutans GS-5 was the most sensitive to fluoride, and the initial rate of hydrolysis of ATP was reduced 50% by approximately 3 mM fluoride. The enzyme of Lactobacillus casei ATCC 4646 was the most resistant, and about 25 mM fluoride was required for 50% inhibition. The response to fluoride appeared to involve reversible, noncompetitive inhibition during short exposure to low levels of fluoride and nonreversible inhibition at higher fluoride levels. In addition, kinetic studies of the effects of fluoride on the enzymes of membranes of S. mutans and L. casei indicated that reversible inhibition was at least partly overcome at high levels of either ATP or Mg. The effects of pH on fluoride inhibition of ATPases were markedly different from the effects of pH on inhibition of acid/base regulation of intact cells by fluoride. It appeared that formation of HF was not required for inhibition of the ATPases. F1 ATPases isolated from the membranes by washing with buffers of low ionic strength proved to be less sensitive to fluoride than the membrane-associated F1F0 holoenzymes, and it was concluded that the F0 or membrane sector of the holoenzyme is involved in fluoride inhibition.
منابع مشابه
Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases.
Bafilomycins and concanamycins, two groups of the plecomacrolide-defined class of macrolide antibiotics, have recently been recognized as important tools for studying the physiological role of vacuolar-type, proton-translocating ATPases (V-ATPases) and ATPases with phosphorylated states (P-ATPases) in animal and plant cells as well as in yeast, fungi and bacteria. The following review will give...
متن کاملMembrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium.
Syntrophus gentianae is a strictly anaerobic bacterium which ferments benzoate to acetate, CO2 and H2 in the presence of hydrogen-utilizing partner bacteria. Benzoate is activated by a benzoyl CoA ligase enzyme which forms AMP and pyrophosphate as coproducts. Pyrophosphatase activity was found to be largely membrane bound. Pyrophosphate hydrolysis was associated with proton translocation across...
متن کاملOur research on proton pumping ATPases over three decades: their biochemistry, molecular biology and cell biology
ATP is synthesized by F-type proton-translocating ATPases (F-ATPases) coupled with an electrochemical proton gradient established by an electron transfer chain. This mechanism is ubiquitously found in mitochondria, chloroplasts and bacteria. Vacuolar-type ATPases (V-ATPases) are found in endomembrane organelles, including lysosomes, endosomes, synaptic vesicles, etc., of animal and plant cells....
متن کاملEvolution of membrane bioenergetics
By combining structural and phylogenetic analyses, we have earlier clarified the evolutionary relationships among membrane enzymes that couple the transmembrane transfer of protons or sodium ions with the synthesis/hydroly-sis of ATP. A comparison of the structures of the sodium-dependent bacterial and archaeal ATPases revealed nearly identical sets of amino acids involved in sodium binding. Ph...
متن کاملPolyphosphate and acidocalcisomes.
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H(+)-PPase or VP1), the vacuolar proton ATPase (V-H(+)-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 55 11 شماره
صفحات -
تاریخ انتشار 1987